Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(3,4-Dichlorophenyl)-3-(1*H*-1,2,4triazol-1-yl)propan-1-one

Tong-De Li, Na-Na Tian, Sai Bi and Jun Wan*

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China Correspondence e-mail: gustchemistry@126.com

Received 26 May 2007; accepted 29 May 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.108; data-to-parameter ratio = 14.2.

The molecule of the title compound, $C_{11}H_9Cl_2N_3O$, is nonplanar, with a dihedral angle of 80.04 (11)° between the benzene and triazole rings. The packing is stabilized by π - π interactions, with centroid–centroid distances of 3.724 and 3.590 Å for the triazole and benzene rings, respectively, and by van der Waals forces.

Related literature

For related literature, see: Wan et al. (2005); Allen et al. (1987).

Experimental

Crystal data

$C_{11}H_9Cl_2N_3O$	b = 7.1403 (11) Å
$M_r = 270.11$	c = 12.3933 (19) Å
Triclinic, P1	$\alpha = 80.830 \ (2)^{\circ}$
a = 6.8296 (10) Å	$\beta = 78.724 \ (2)^{\circ}$
Triclinic, <i>P</i> 1 a = 6.8296 (10) Å	$\alpha = 80.830 \ (2)^{\circ}$ $\beta = 78.724 \ (2)^{\circ}$

 $\gamma = 75.612 \ (2)^{\circ}$ $V = 570.19 \ (15) \ \text{\AA}^3$ Z = 2Mo $K\alpha$ radiation

Data collection

Siemens SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.865, T_{\rm max} = 0.962$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.108$ S = 0.662194 reflections $\mu = 0.55 \text{ mm}^{-1}$ T = 293 (2) K $0.27 \times 0.27 \times 0.07 \text{ mm}$

3183 measured reflections 2194 independent reflections 1955 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.009$

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997a); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997a); molecular graphics: *SHELXTL* (Sheldrick, 1997b); software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2003).

This project was supported by the Special Project of Qingdao for Leadership of Science and Technology (No. 05-2-JC-80) and the Outstanding Adult-Young Scientific Research Encouraging Foundation of Shandong Province (No. 2005BS04007).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2305).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997*a*). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996). *SMART* and *SAINT*. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Wan, J., Li, C.-L., Li, X.-M., Zhang, S.-S. & Ouyang, P.-K. (2005). Acta Cryst. E61, 03394–03395.

supplementary materials

Acta Cryst. (2007). E63, o3063 [doi:10.1107/S1600536807026207]

1-(3,4-Dichlorophenyl)-3-(1H-1,2,4-triazol-1-yl)propan-1-one

T.-D. Li, N.-N. Tian, S. Bi and J. Wan

Comment

As part of our ongoing studies on triazole compounds, the title compound, (I), was obtained by the reaction of triazole and 1-(3,4-dichlorophenyl)-3-(dimethylamino)propan-1-one hydrochloride. We report the crystal structure of (I) here.

All the bond lengths and angles in (I) are within normal ranges (Allen *et al.*, 1987). The whole molecule is non-planar with a dihedral angle of 80.04 (11)° between the benzene ring (C1—C6) and triazole ring (N1—N3/C10/C11). The crystal packing is further stabilized by Van der Waals forces. The short distances $Cg1\cdots Cg1^{i}$ (3.724 Å) and $Cg2\cdots Cg2^{ii}$ (3.590 Å) [symmetry code: (i) 2 - x, 1 - y, 3 - z; (ii) 1 - x, 1 - y, 2 - z], where Cg1 and Cg2 denote the centroids of triazole ring and benzene ring, respectively, indicate π - π interactions.

Experimental

The title compound (I) was prepared according to the literature method of Wan *et al.* (2005). Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution at room temperature over a period of 5 d.

Refinement

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with $U_{iso}(H) = 1.2 U_{ed}(C)$.

Figures

Fig. 1. The structure of the compound (I) showing 50% probability displacement ellipsoids and the atom numbering scheme.

Fig. 2. Packing diagram of (I) viewed down the a axis.

1-(3,4-Dichlorophenyl)-3-(1H-1,2,4-triazol-1-yl)propan-1-one

Crystal data	
C ₁₁ H ₉ Cl ₂ N ₃ O	Z = 2
$M_r = 270.11$	$F_{000} = 276$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.573 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 6.8296 (10) Å	Cell parameters from 1835 reflections
b = 7.1403 (11) Å	$\theta = 3.1 - 26.0^{\circ}$
c = 12.3933 (19) Å	$\mu = 0.55 \text{ mm}^{-1}$
$\alpha = 80.830 \ (2)^{\circ}$	T = 293 (2) K
$\beta = 78.724 \ (2)^{\circ}$	Plate, colourless
$\gamma = 75.612 \ (2)^{\circ}$	$0.27 \times 0.27 \times 0.07 \text{ mm}$
$V = 570.19 (15) \text{ Å}^3$	

Data collection

Siemens SMART 1000 CCD area-detector diffractometer	2194 independent reflections
Radiation source: fine-focus sealed tube	1955 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.009$
Detector resolution: 8.33 pixels mm ⁻¹	$\theta_{\text{max}} = 26.0^{\circ}$
T = 293(2) K	$\theta_{\min} = 1.7^{\circ}$
ω scans	$h = -8 \rightarrow 4$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$k = -8 \rightarrow 8$
$T_{\min} = 0.865, T_{\max} = 0.962$	$l = -15 \rightarrow 15$
3183 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.035$	H-atom parameters constrained
$wR(F^2) = 0.108$	$w = 1/[\sigma^2(F_o^2) + (0.1029P)^2 + 0.463P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.66	$(\Delta/\sigma)_{\rm max} = 0.001$
2194 reflections	$\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$
154 parameters	$\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Primary Extinction correction: none methods

sup-2

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cl1	0.21802 (8)	0.95267 (7)	0.80256 (4)	0.05716 (19)
C12	0.70100 (8)	0.87272 (8)	0.76018 (4)	0.05845 (19)
C6	0.5728 (3)	0.6771 (2)	1.08034 (13)	0.0355 (4)
01	0.8822 (2)	0.5501 (2)	1.15061 (11)	0.0532 (4)
N1	0.8075 (2)	0.6065 (2)	1.40105 (12)	0.0443 (4)
C5	0.3598 (3)	0.7133 (2)	1.09772 (15)	0.0406 (4)
H5A	0.2892	0.6815	1.1677	0.049*
C1	0.6769 (3)	0.7250 (2)	0.97532 (14)	0.0382 (4)
H1A	0.8193	0.6996	0.9626	0.046*
C4	0.2519 (3)	0.7961 (3)	1.01167 (16)	0.0437 (4)
H4A	0.1098	0.8179	1.0237	0.052*
C7	0.6964 (3)	0.5855 (2)	1.17056 (14)	0.0377 (4)
C8	0.5837 (3)	0.5375 (3)	1.28599 (14)	0.0403 (4)
H8A	0.5045	0.4433	1.2833	0.048*
H8B	0.4885	0.6546	1.3096	0.048*
C3	0.3558 (3)	0.8462 (2)	0.90829 (15)	0.0396 (4)
C2	0.5691 (3)	0.8107 (2)	0.88940 (14)	0.0394 (4)
C9	0.7250 (3)	0.4561 (3)	1.37097 (15)	0.0438 (4)
H9A	0.6499	0.3970	1.4368	0.053*
H9B	0.8371	0.3554	1.3411	0.053*
N2	0.6857 (3)	0.7499 (3)	1.45984 (14)	0.0580 (5)
C12	0.9975 (3)	0.6333 (4)	1.37805 (17)	0.0594 (6)
H12A	1.1073	0.5521	1.3389	0.071*
N3	1.0108 (4)	0.7888 (3)	1.41752 (17)	0.0744 (6)
C13	0.8161 (5)	0.8543 (4)	1.46695 (18)	0.0689 (7)
H13A	0.7768	0.9653	1.5034	0.083*
Atomic displacemer	nt parameters $(Å^2)$			

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0636 (3)	0.0552 (3)	0.0515 (3)	-0.0020 (2)	-0.0247 (2)	-0.0020 (2)
Cl2	0.0628 (3)	0.0730 (4)	0.0343 (3)	-0.0149 (3)	-0.0007 (2)	-0.0001 (2)

supplementary materials

C6	0.0395 (9)	0.0339 (8)	0.0350 (8)	-0.0110 (7)	-0.0055 (7)	-0.0059 (6)
01	0.0388 (7)	0.0748 (9)	0.0416 (7)	-0.0087 (6)	-0.0049 (5)	-0.0029 (6)
N1	0.0470 (8)	0.0567 (9)	0.0315 (7)	-0.0195 (7)	-0.0074 (6)	0.0019 (6)
C5	0.0390 (9)	0.0425 (9)	0.0395 (9)	-0.0127 (7)	-0.0030(7)	-0.0014 (7)
C1	0.0382 (9)	0.0403 (8)	0.0374 (9)	-0.0108 (7)	-0.0046 (7)	-0.0076 (7)
C4	0.0384 (9)	0.0426 (9)	0.0501 (10)	-0.0096 (7)	-0.0084 (8)	-0.0033 (7)
C7	0.0395 (9)	0.0397 (8)	0.0352 (9)	-0.0104 (7)	-0.0056 (7)	-0.0069 (7)
C8	0.0402 (9)	0.0454 (9)	0.0368 (9)	-0.0138 (7)	-0.0048 (7)	-0.0040 (7)
C3	0.0465 (9)	0.0323 (8)	0.0418 (9)	-0.0062 (7)	-0.0140 (7)	-0.0057 (6)
C2	0.0488 (10)	0.0364 (8)	0.0339 (8)	-0.0128 (7)	-0.0036 (7)	-0.0062 (6)
C9	0.0467 (10)	0.0476 (10)	0.0368 (9)	-0.0132 (8)	-0.0067 (7)	-0.0001 (7)
N2	0.0692 (11)	0.0622 (10)	0.0461 (9)	-0.0237 (9)	-0.0020 (8)	-0.0116 (8)
C12	0.0520 (11)	0.0837 (15)	0.0460 (11)	-0.0293 (11)	-0.0127 (9)	0.0109 (10)
N3	0.0877 (15)	0.0959 (15)	0.0591 (12)	-0.0577 (13)	-0.0323 (11)	0.0180 (11)
C13	0.109 (2)	0.0717 (14)	0.0412 (11)	-0.0455 (14)	-0.0217 (12)	0.0023 (10)

Geometric parameters (Å, °)

Cl1—C3	1.7291 (17)	C4—H4A	0.9300
Cl2—C2	1.7262 (17)	С7—С8	1.517 (2)
C6—C5	1.392 (2)	C8—C9	1.517 (3)
C6—C1	1.391 (2)	C8—H8A	0.9700
С6—С7	1.501 (2)	C8—H8B	0.9700
O1—C7	1.214 (2)	C3—C2	1.394 (3)
N1-C12	1.328 (3)	С9—Н9А	0.9700
N1—N2	1.359 (2)	С9—Н9В	0.9700
N1-C9	1.456 (2)	N2—C13	1.319 (3)
C5—C4	1.385 (3)	C12—N3	1.312 (3)
С5—Н5А	0.9300	C12—H12A	0.9300
C1—C2	1.387 (2)	N3—C13	1.352 (4)
C1—H1A	0.9300	C13—H13A	0.9300
C4—C3	1.377 (3)		
C5—C6—C1	119.26 (16)	C9—C8—H8B	108.9
C5—C6—C7	122.57 (15)	H8A—C8—H8B	107.7
C1—C6—C7	118.17 (15)	C4—C3—C2	120.29 (16)
C12—N1—N2	109.21 (18)	C4—C3—Cl1	119.09 (14)
C12—N1—C9	129.46 (19)	C2—C3—Cl1	120.62 (14)
N2—N1—C9	121.32 (15)	C1—C2—C3	119.74 (16)
C6—C5—C4	120.62 (16)	C1—C2—Cl2	119.54 (14)
С6—С5—Н5А	119.7	C3—C2—Cl2	120.72 (14)
С4—С5—Н5А	119.7	N1—C9—C8	111.80 (15)
C2—C1—C6	120.24 (16)	N1—C9—H9A	109.3
C2—C1—H1A	119.9	С8—С9—Н9А	109.3
С6—С1—Н1А	119.9	N1—C9—H9B	109.3
C3—C4—C5	119.83 (17)	С8—С9—Н9В	109.3
С3—С4—Н4А	120.1	Н9А—С9—Н9В	107.9
С5—С4—Н4А	120.1	C13—N2—N1	102.01 (19)
O1—C7—C6	120.27 (15)	N1—C12—N3	111.4 (2)
O1—C7—C8	121.24 (15)	N1—C12—H12A	124.3

C6—C7—C8	118.48 (14)	N3—C12—H12A	124.3
С7—С8—С9	113.41 (15)	C12—N3—C13	102.06 (19)
С7—С8—Н8А	108.9	N2—C13—N3	115.3 (2)
С9—С8—Н8А	108.9	N2—C13—H13A	122.4
С7—С8—Н8В	108.9	N3—C13—H13A	122.4
C1—C6—C5—C4	0.0 (2)	C4—C3—C2—C1	-0.1 (2)
C7—C6—C5—C4	-179.28 (15)	Cl1—C3—C2—C1	-179.96 (12)
C5—C6—C1—C2	1.0 (2)	C4—C3—C2—C12	179.98 (13)
C7—C6—C1—C2	-179.72 (14)	Cl1—C3—C2—Cl2	0.1 (2)
C6—C5—C4—C3	-1.0 (3)	C12—N1—C9—C8	-110.1 (2)
C5—C6—C7—O1	177.26 (16)	N2—N1—C9—C8	68.8 (2)
C1—C6—C7—O1	-2.0 (2)	C7—C8—C9—N1	73.91 (19)
C5—C6—C7—C8	-2.3 (2)	C12—N1—N2—C13	0.3 (2)
C1—C6—C7—C8	178.48 (14)	C9—N1—N2—C13	-178.74 (16)
O1—C7—C8—C9	3.7 (2)	N2—N1—C12—N3	-0.5 (2)
C6—C7—C8—C9	-176.79 (14)	C9—N1—C12—N3	178.46 (17)
C5—C4—C3—C2	1.1 (3)	N1-C12-N3-C13	0.4 (2)
C5—C4—C3—Cl1	-179.07 (13)	N1—N2—C13—N3	-0.1 (2)
C6—C1—C2—C3	-0.9 (2)	C12—N3—C13—N2	-0.2 (3)
C6-C1-C2-Cl2	178.97 (12)		

Fig. 2